首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   4篇
  国内免费   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2015年   6篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2010年   1篇
  2009年   10篇
  2008年   9篇
  2007年   15篇
  2006年   12篇
  2005年   13篇
  2004年   6篇
  2003年   15篇
  2002年   6篇
  2001年   10篇
  2000年   7篇
  1999年   1篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1994年   2篇
  1993年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有151条查询结果,搜索用时 31 毫秒
1.
2.
 Nuclear ribosomal (ITS) DNA sequence data from representatives of eleven out of 12 genera previously included in Thlaspi sensu lato were analyzed to elucidate relationships within the former genus Thlaspi sensu lato. Sequences from Thlaspi segregates Noccaea, Masmenia, Callothlaspi, Kotschyella, Microthlaspi, and Noccidium were added to the existing data sets, and only some Thlaspi sensu lato segregates formed a monophyletic group. The recently renamed genus Pseudosempervivum, formerly part of the genus Cochlearia, has been shown to be closely related to this group as well. Microthlaspi consists of three independent lineages of which Microthlaspi umbellatum is closely related to Neurotropis. The Thlaspi s.str. taxa including the type species T. arvense, are closely related to Peltaria and Alliaria and they represent a monophyletic group. Kotschyella and Noccidium, which were also integrated into Thlaspi s.l. are not closely related to any Thlaspi lineage. Therefore, we suggest major taxonomical changes which are not in agreement with concepts based on morphological data. Our ITS based phylogeny demonstrates that subtribe Thlaspidinae comprises some additional genera such as Teesdalia, Peltaria, and Alliaria, the latter two even previously classified in other tribes than tribe Lepidieae. Received August 15, 2000 Accepted January 30, 2001  相似文献   
3.
Otolith growth increments in wild-caught alizarin complex one (ALC)-marked honmoroko Gnathopogon caerulescens were examined to verify the veracity of the age determination method in cyprinids. ALC-marked G. caerulescens recaptured from their natural environment had lapilli increment counts outside the ALC ring mark that had formed on a daily basis during the juvenile stage. This apparently being the first direct evidence of daily periodicity of otolith increment formation in wild-caught cyprinids.  相似文献   
4.
Growth, organic acid and phytochelatin accumulation, as well as the activity of several antioxidative enzymes, i.e. superoxide dismutase (SOD), ascorbate peroxidase (APX) guaiacol peroxidase (POX) and catalase (CAT) were investigated under Zn and Cd stress in hydroponically growing plants of Thlaspi caerulescens population from Plombières, Belgium. Tissue Zn and Cd concentration increased (the highest concentration of both was in roots) as the concentration of these metals increased in the nutrient solution. Increasing Zn concentration enhanced plant growth, while with Cd it declined compared to the control. Both metals stimulated malate accumulation in shoots, Zn also caused citrate to increase. Zn did not induce phytochelatin (PC) accumulation. In plants exposed to Cd, PC concentration increased with increasing Cd concentration, but decreased with time of exposure. Under Zn stress SOD activity increased, but APX activity was higher at 500 and 1000 μM Zn and CAT activity only at 500 μM Zn in comparison with the control. CAT activity decreased in Cd- and Zn-stressed plants. The results suggest that relative to other populations, a T. caerulescens population from Plombières, when grown in hydroponics, was characterized by low Zn and Cd uptake and their translocation to shoots and tolerance to both metals. The accumulation of malate and citrate, but not PC accumulation was responsible for Zn tolerance. Cd tolerance seems to be due to neither PC production nor accumulation of organic acids.  相似文献   
5.
6.
Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg–1 and 43.1, 482, 812 mg Zn kg–1 respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ~5.5–7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use.

Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg–1 on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg–1 with only mild phytotoxicity symptoms during early growth at pH > 6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg–1 in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg–1 after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably.

Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.  相似文献   

7.
8.
The integral membrane protein Thlaspi goesingense metal tolerance protein 1 (TgMTP1) has been suggested to play an important role in Zn hyperaccumulation in T. goesingense . Here, we show that the TgMTP1 protein is accumulated to high levels at the vacuolar membrane in shoot tissue of T. goesingense . TgMTP1 is likely to act in the transport of Zn into the vacuole, enhancing both Zn accumulation and tolerance. By specifically expressing TgMTP1 in Arabidopsis thaliana shoots, we show that TgMTP1, localized at the vacuolar membrane, can drive the enhanced shoot accumulation of Zn by initiating a systemic Zn deficiency response. The systematic response includes increased expression of Zn transporters ( ZIP3 , ZIP4 , ZIP5 and ZIP9 ) in both shoot and root tissue. Furthermore, shoot-specific accumulation of TgMTP1 at the vacuolar membrane also leads to increased resistance to Zn in A. thaliana , probably through enhanced Zn compartmentalization in the vacuole. Such evidence leads to the conclusion that the high levels of TgMTP1 at the vacuolar membrane in shoot tissue of the Zn hyperaccumulator T. goesingense play a role in both Zn tolerance and enhanced Zn uptake and accumulation, via the activation of a systemic Zn deficiency response.  相似文献   
9.
In a model hyperaccumulation study a Cd/Zn hyperaccumulator Thlaspi caerulescens accession Ganges and a recently reported Cd/Zn hyperaccumulator Thlaspi praecox grown in increasing Cd and Zn concentrations in the substrate and in field collected polluted soil were compared. Plant biomass, concentrations of Cd and Zn, total chlorophylls and anthocyanins, antioxidative stress parameters and activities of selected antioxidative enzymes were compared. Increasing Cd, but not Zn in the substrate resulted in the increase of biomass of roots and shoots of T. praecox and T. caerulescens. The two species hyperaccumulated Cd in the shoots to a similar extent, whereas T. caerulescens accumulated more Zn in the shoots than T. praecox. Cadmium amendment decreased total chlorophyll concentration and glutathione reductase activity, and increased non-protein thiols concentration only in T. praecox, suggesting that it is less tolerant to Cd than T. caerulescens. In the field-contaminated soil, T. caerulescens accumulated higher Cd concentrations; but as T. praecox produced higher biomass, both species have similar ability to extract Cd.  相似文献   
10.
Zhao  F.J.  Lombi  E.  McGrath  S.P. 《Plant and Soil》2003,249(1):37-43
Thlaspi caerulescens is a Zn and Cd hyperaccumulator, and has been tested for its phytoremediation potential. In this paper we examine the relationships between the concentrations of Zn and Cd in soil and in T. caerulescens shoots, and calculate the rates of Zn and Cd extraction from soil. Using published data from field surveys, field and pot experiments, we show that the concentrations of Zn and Cd in the shoots correlate with the concentrations of Zn and Cd in soils in a log-linear fashion over three orders of magnitude. There is little systematic difference between different populations of T. caerulescens in the relationship between soil and plant Zn concentrations. In contrast, populations from southern France are far superior to those from other regions in Cd accumulation. Bioaccumulation factors (plant to soil concentration ratio) for Zn and Cd decrease log-linearly with soil metal concentration. Model calculations show that phytoremediation using T. caerulescens is feasible when soil is only moderately contaminated with Zn and Cd, and the phytoremediation potential is better for Cd than for Zn if the populations from southern France are used. Recent progress in the understanding of the mechanisms of Zn and Cd uptake by T. caerulescens is also reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号